Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiome Res Rep ; 2(2): 11, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38047281

RESUMO

Background: Development and maturation of the immune system begin in utero and continue throughout the neonatal period. Both the maternal and neonatal gut microbiome influence immune development, but the relative importance of the prenatal and postnatal periods is unclear. Methods: In the present study, we characterized immune cell populations in mice in which the timing of microbiome colonization was strictly controlled using gnotobiotic methodology. Results: Compared to conventional (CONV) mice, germ-free (GF) mice conventionalized at birth (EC mice) showed few differences in immune cell populations in adulthood, explaining only 2.36% of the variation in immune phenotypes. In contrast, delaying conventionalization to the fourth week of life (DC mice) affected seven splenic immune cell populations in adulthood, including dendritic cells and regulatory T cells (Tregs), explaining 29.01% of the variation in immune phenotypes. Early life treatment of DC mice with Limosilactobacillus reuteri restored splenic dendritic cells and Tregs to levels observed in EC mice, and there were strain-specific effects on splenic CD4+ T cells, CD8+ T cells, and CD11c+ F4/80+ mononuclear phagocytes. Conclusion: This work demonstrates that the early postnatal period, compared to the prenatal period, is relatively more important for microbial signals to influence immune development in mice. Our findings further show that targeted microbial treatments in early life can redress adverse effects on immune development caused by the delayed acquisition of the neonatal gut microbiome.

2.
BMC Biol ; 21(1): 53, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36907868

RESUMO

BACKGROUND: Gut microbes play crucial roles in the development and health of their animal hosts. However, the evolutionary relationships of gut microbes with vertebrate hosts, and the consequences that arise for the ecology and lifestyle of the microbes are still insufficiently understood. Specifically, the mechanisms by which strain-level diversity evolved, the degree by which lineages remain stably associated with hosts, and how their evolutionary history influences their ecological performance remain a critical gap in our understanding of vertebrate-microbe symbiosis. RESULTS: This study presents the characterization of an extended collection of strains of Limosilactobacillus reuteri and closely related species from a wide variety of hosts by phylogenomic and comparative genomic analyses combined with colonization experiments in mice to gain insight into the long-term evolutionary relationship of a bacterial symbiont with vertebrates. The phylogenetic analysis of L. reuteri revealed early-branching lineages that primarily consist of isolates from rodents (four lineages) and birds (one lineage), while lineages dominated by strains from herbivores, humans, pigs, and primates arose more recently and were less host specific. Strains from rodent lineages, despite their phylogenetic divergence, showed tight clustering in gene-content-based analyses. These L. reuteri strains but not those ones from non-rodent lineages efficiently colonize the forestomach epithelium of germ-free mice. The findings support a long-term evolutionary relationships of L. reuteri lineages with rodents and a stable host switch to birds. Associations of L. reuteri with other host species are likely more dynamic and transient. Interestingly, human isolates of L. reuteri cluster phylogenetically closely with strains from domesticated animals, such as chickens and herbivores, suggesting zoonotic transmissions. CONCLUSIONS: Overall, this study demonstrates that the evolutionary relationship of a vertebrate gut symbiont can be stable in particular hosts over time scales that allow major adaptations and specialization, but also emphasizes the diversity of symbiont lifestyles even within a single bacterial species. For L. reuteri, symbiont lifestyles ranged from autochthonous, likely based on vertical transmission and stably aligned to rodents and birds over evolutionary time, to allochthonous possibly reliant on zoonotic transmission in humans. Such information contributes to our ability to use these microbes in microbial-based therapeutics.


Assuntos
Limosilactobacillus reuteri , Humanos , Animais , Suínos , Camundongos , Filogenia , Roedores , Galinhas , Evolução Biológica , Vertebrados
3.
Nature ; 613(7945): 639-649, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36697862

RESUMO

Whether the human fetus and the prenatal intrauterine environment (amniotic fluid and placenta) are stably colonized by microbial communities in a healthy pregnancy remains a subject of debate. Here we evaluate recent studies that characterized microbial populations in human fetuses from the perspectives of reproductive biology, microbial ecology, bioinformatics, immunology, clinical microbiology and gnotobiology, and assess possible mechanisms by which the fetus might interact with microorganisms. Our analysis indicates that the detected microbial signals are likely the result of contamination during the clinical procedures to obtain fetal samples or during DNA extraction and DNA sequencing. Furthermore, the existence of live and replicating microbial populations in healthy fetal tissues is not compatible with fundamental concepts of immunology, clinical microbiology and the derivation of germ-free mammals. These conclusions are important to our understanding of human immune development and illustrate common pitfalls in the microbial analyses of many other low-biomass environments. The pursuit of a fetal microbiome serves as a cautionary example of the challenges of sequence-based microbiome studies when biomass is low or absent, and emphasizes the need for a trans-disciplinary approach that goes beyond contamination controls by also incorporating biological, ecological and mechanistic concepts.


Assuntos
Biomassa , Contaminação por DNA , Feto , Microbiota , Animais , Feminino , Humanos , Gravidez , Líquido Amniótico/imunologia , Líquido Amniótico/microbiologia , Mamíferos , Microbiota/genética , Placenta/imunologia , Placenta/microbiologia , Feto/imunologia , Feto/microbiologia , Reprodutibilidade dos Testes
4.
Microbiome ; 10(1): 77, 2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35562794

RESUMO

BACKGROUND: Dietary fiber is an integral part of a healthy diet, but questions remain about the mechanisms that underlie effects and the causal contributions of the gut microbiota. Here, we performed a 6-week exploratory trial in adults with excess weight (BMI: 25-35 kg/m2) to compare the effects of a high-dose (females: 25 g/day; males: 35 g/day) supplement of fermentable corn bran arabinoxylan (AX; n = 15) with that of microbiota-non-accessible microcrystalline cellulose (MCC; n = 16). Obesity-related surrogate endpoints and biomarkers of host-microbiome interactions implicated in the pathophysiology of obesity (trimethylamine N-oxide, gut hormones, cytokines, and measures of intestinal barrier integrity) were assessed. We then determined whether clinical outcomes could be predicted by fecal microbiota features or mechanistic biomarkers. RESULTS: AX enhanced satiety after a meal and decreased homeostatic model assessment of insulin resistance (HOMA-IR), while MCC reduced tumor necrosis factor-α and fecal calprotectin. Machine learning models determined that effects on satiety could be predicted by fecal bacterial taxa that utilized AX, as identified by bioorthogonal non-canonical amino acid tagging. Reductions in HOMA-IR and calprotectin were associated with shifts in fecal bile acids, but correlations were negative, suggesting that the benefits of fiber may not be mediated by their effects on bile acid pools. Biomarkers of host-microbiome interactions often linked to bacterial metabolites derived from fiber fermentation (short-chain fatty acids) were not affected by AX supplementation when compared to non-accessible MCC. CONCLUSION: This study demonstrates the efficacy of purified dietary fibers when used as supplements and suggests that satietogenic effects of AX may be linked to bacterial taxa that ferment the fiber or utilize breakdown products. Other effects are likely microbiome independent. The findings provide a basis for fiber-type specific therapeutic applications and their personalization. TRIAL REGISTRATION: Clinicaltrials.gov, NCT02322112 , registered on July 3, 2015. Video Abstract.


Assuntos
Microbioma Gastrointestinal , Adulto , Bactérias , Ácidos e Sais Biliares/análise , Biomarcadores/análise , Fibras na Dieta , Fezes/microbiologia , Feminino , Microbioma Gastrointestinal/fisiologia , Humanos , Complexo Antígeno L1 Leucocitário/análise , Complexo Antígeno L1 Leucocitário/farmacologia , Masculino , Obesidade/microbiologia
5.
Front Microbiol ; 12: 734526, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34867850

RESUMO

Campylobacter jejuni is a common cause of diarrheal disease worldwide. Human infection typically occurs through the ingestion of contaminated poultry products. We previously demonstrated that an attenuated Escherichia coli live vaccine strain expressing the C. jejuni N-glycan on its surface reduced the Campylobacter load in more than 50% of vaccinated leghorn and broiler birds to undetectable levels (responder birds), whereas the remainder of the animals was still colonized (non-responders). To understand the underlying mechanism, we conducted three vaccination and challenge studies using 135 broiler birds and found a similar responder/non-responder effect. Subsequent genome-wide association studies (GWAS), analyses of bird sex and levels of vaccine-induced IgY responses did not correlate with the responder versus non-responder phenotype. In contrast, antibodies isolated from responder birds displayed a higher Campylobacter-opsonophagocytic activity when compared to antisera from non-responder birds. No differences in the N-glycome of the sera could be detected, although minor changes in IgY glycosylation warrant further investigation. As reported before, the composition of the microbiota, particularly levels of OTU classified as Clostridium spp., Ruminococcaceae and Lachnospiraceae are associated with the response. Transplantation of the cecal microbiota of responder birds into new birds in combination with vaccination resulted in further increases in vaccine-induced antigen-specific IgY responses when compared to birds that did not receive microbiota transplants. Our work suggests that the IgY effector function and microbiota contribute to the efficacy of the E. coli live vaccine, information that could form the basis for the development of improved vaccines targeted at the elimination of C. jejuni from poultry.

6.
iScience ; 24(7): 102709, 2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34296070

RESUMO

Studies in experimental autoimmune encephalomyelitis (EAE), the animal model of multiple sclerosis, have shown potential links between diet components, microbiome composition, and modulation of immune responses. In this review, we reanalyze and discuss findings in an outbred marmoset EAE model in which a yogurt-based dietary supplement decreased disease frequency and severity. We show that although diet has detectable effects on the fecal microbiome, microbiome changes are more strongly associated with the EAE development. Using an ecological framework, we further show that the dominant factors influencing the gut microbiota were marmoset sibling pair and experimental time point. These findings emphasize challenges in assigning cause-and-effect relationships in studies of diet-microbiome-host interactions and differentiating the diet effects from other environmental, stochastic, and host-related factors. We advocate for animal experiments to be designed to allow causal inferences of the microbiota's role in pathology while considering the complex ecological processes that shape microbial communities.

7.
Microbiome ; 8(1): 118, 2020 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-32814582

RESUMO

BACKGROUND: Variability in the health effects of dietary fiber might arise from inter-individual differences in the gut microbiota's ability to ferment these substrates into beneficial metabolites. Our understanding of what drives this individuality is vastly incomplete and will require an ecological perspective as microbiomes function as complex inter-connected communities. Here, we performed a parallel two-arm, exploratory randomized controlled trial in 31 adults with overweight and class-I obesity to characterize the effects of long-chain, complex arabinoxylan (n = 15) at high supplementation doses (female: 25 g/day; male: 35 g/day) on gut microbiota composition and short-chain fatty acid production as compared to microcrystalline cellulose (n = 16, non-fermentable control), and integrated the findings using an ecological framework. RESULTS: Arabinoxylan resulted in a global shift in fecal bacterial community composition, reduced α-diversity, and the promotion of specific taxa, including operational taxonomic units related to Bifidobacterium longum, Blautia obeum, and Prevotella copri. Arabinoxylan further increased fecal propionate concentrations (p = 0.012, Friedman's test), an effect that showed two distinct groupings of temporal responses in participants. The two groups showed differences in compositional shifts of the microbiota (p ≤ 0.025, PERMANOVA), and multiple linear regression (MLR) analyses revealed that the propionate response was predictable through shifts and, to a lesser degree, baseline composition of the microbiota. Principal components (PCs) derived from community data were better predictors in MLR models as compared to single taxa, indicating that arabinoxylan fermentation is the result of multi-species interactions within microbiomes. CONCLUSION: This study showed that long-chain arabinoxylan modulates both microbiota composition and the output of health-relevant SCFAs, providing information for a more targeted application of this fiber. Variation in propionate production was linked to both compositional shifts and baseline composition, with PCs derived from shifts of the global microbial community showing the strongest associations. These findings constitute a proof-of-concept for the merit of an ecological framework that considers features of the wider gut microbial community for the prediction of metabolic outcomes of dietary fiber fermentation. This provides a basis to personalize the use of dietary fiber in nutritional application and to stratify human populations by relevant gut microbiota features to account for the inconsistent health effects in human intervention studies. TRIAL REGISTRATION: Clinicaltrials.gov, NCT02322112 , registered on July 3, 2015. Video Abstract.


Assuntos
Fezes/química , Microbioma Gastrointestinal/efeitos dos fármacos , Obesidade/microbiologia , Sobrepeso/microbiologia , Propionatos/metabolismo , Xilanos/química , Xilanos/farmacologia , Adulto , Fibras na Dieta/metabolismo , Fibras na Dieta/microbiologia , Feminino , Humanos , Masculino , Propionatos/análise , Fatores de Tempo , Zea mays/química
8.
Appl Environ Microbiol ; 86(11)2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32276972

RESUMO

Cross-feeding based on the metabolite 1,2-propanediol has been proposed to have an important role in the establishment of trophic interactions among gut symbionts, but its ecological importance has not been empirically established. Here, we show that in vitro growth of Lactobacillus reuteri (syn. Limosilactobacillus reuteri) ATCC PTA 6475 is enhanced through 1,2-propanediol produced by Bifidobacterium breve UCC2003 and Escherichia coli MG1655 from the metabolization of fucose and rhamnose, respectively. Work with isogenic mutants showed that the trophic interaction is dependent on the pduCDE operon in L. reuteri, which encodes the ability to use 1,2-propanediol, and the l-fucose permease (fucP) gene in B. breve, which is required for 1,2-propanediol formation from fucose. Experiments in gnotobiotic mice revealed that, although the pduCDE operon bestows a fitness burden on L. reuteri ATCC PTA 6475 in the mouse digestive tract, the ecological performance of the strain was enhanced in the presence of B. breve UCC2003 and the mucus-degrading species Bifidobacterium bifidum The use of the respective pduCDE and fucP mutants of L. reuteri and B. breve in the mouse experiments indicated that the trophic interaction was specifically based on 1,2-propanediol. Overall, our work established the ecological importance of cross-feeding relationships based on 1,2-propanediol for the fitness of a bacterial symbiont in the vertebrate gut.IMPORTANCE Through experiments in gnotobiotic mice that employed isogenic mutants of bacterial strains that produce (Bifidobacterium breve) and utilize (Lactobacillus reuteri) 1,2-propanediol, this study provides mechanistic insight into the ecological ramifications of a trophic interaction between gut symbionts. The findings improve our understanding on how cross-feeding influences the competitive fitness of L. reuteri in the vertebrate gut and revealed a putative selective force that shaped the evolution of the species. The findings are relevant since they provide a basis to design rational microbial-based strategies to modulate gut ecosystems, which could employ mixtures of bacterial strains that establish trophic interactions or a personalized approach based on the ability of a resident microbiota to provide resources for the incoming microbe.


Assuntos
Bifidobacterium breve/metabolismo , Escherichia coli/metabolismo , Microbioma Gastrointestinal , Vida Livre de Germes , Limosilactobacillus reuteri/metabolismo , Propilenoglicol/metabolismo , Animais , Feminino , Masculino , Camundongos
9.
Cell Host Microbe ; 27(3): 389-404.e6, 2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-32004499

RESUMO

Dietary fibers (DFs) impact the gut microbiome in ways often considered beneficial. However, it is unknown if precise and predictable manipulations of the gut microbiota, and especially its metabolic activity, can be achieved through DFs with discrete chemical structures. Using a dose-response trial with three type-IV resistant starches (RS4s) in healthy humans, we found that crystalline and phosphate cross-linked starch structures induce divergent and highly specific effects on microbiome composition that are linked to directed shifts in the output of either propionate or butyrate. The dominant RS4-induced effects were remarkably consistent within treatment groups, dose-dependent plateauing at 35 g/day, and can be explained by substrate-specific binding and utilization of the RS4s by bacterial taxa with different pathways for starch metabolism. Overall, these findings support the potential of using discrete DF structures to achieve targeted manipulations of the gut microbiome and its metabolic functions relevant to health.


Assuntos
Fibras na Dieta/metabolismo , Ácidos Graxos Voláteis/metabolismo , Microbioma Gastrointestinal , Amido/química , Adulto , Butiratos/metabolismo , Suplementos Nutricionais , Feminino , Humanos , Masculino , Propionatos/metabolismo , Adulto Jovem
10.
PLoS One ; 14(10): e0224100, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31634382

RESUMO

The BXD family has become one of the preeminent genetic reference populations to understand the genetic and environmental control of phenotypic variation. Here we evaluate the responses to different levels of fat in the diet using both chow diet (CD, 13-18% fat) and a high-fat diet (HFD, 45-60% fat). We studied cohorts of BXD strains, both inbred parents C57BL/6J and DBA/2J (commonly known as B6 and D2, respectively), as well as B6D2 and D2B6 reciprocal F1 hybrids. The comparative impact of genetic and dietary factors was analyzed by profiling a range of phenotypes, most prominently their cecum bacterial composition. The parents of the BXDs and F1 hybrids express limited differences in terms of weight and body fat gain on CD. In contrast, the strain differences on HFD are substantial for percent body fat, with DBA/2J accumulating 12.5% more fat than C57BL/6J (P < 0.0001). The F1 hybrids born to DBA/2J dams (D2B6F1) have 10.6% more body fat (P < 0.001) than those born to C57BL/6J dams. Sequence analysis of the cecum microbiota reveals important differences in bacterial composition among BXD family members with a substantial shift in composition caused by HFD. Relative to CD, the HFD induces a decline in diversity at the phylum level with a substantial increase in Firmicutes (+13.8%) and a reduction in Actinobacteria (-7.9%). In the majority of BXD strains, the HFD also increases cecal sIgA (P < 0.0001)-an important component of the adaptive immunity response against microbial pathogens. Host genetics modulates variation in cecum bacterial composition at the genus level in CD, with significant quantitative trait loci (QTLs) for Oscillibacter mapped to Chr 3 (18.7-19.2 Mb, LRS = 21.4) and for Bifidobacterium mapped to Chr 6 (89.21-89.37 Mb, LRS = 19.4). Introduction of HFD served as an environmental suppressor of these QTLs due to a reduction in the contribution of both genera (P < 0.001). Relations among liver metabolites and cecum bacterial composition were predominant in CD cohort, but these correlations do not persist following the shift to HFD. Overall, these findings demonstrate the important impact of environmental/dietary manipulation on the relationships between host genetics, gastrointestinal bacterial composition, immunological parameters, and metabolites-knowledge that will help in the understanding of the causal sources of metabolic disorders.


Assuntos
Ceco/microbiologia , Dieta Hiperlipídica/efeitos adversos , Microbioma Gastrointestinal/genética , Genética Populacional , Fígado/metabolismo , Obesidade/patologia , Animais , Bifidobacterium/classificação , Bifidobacterium/fisiologia , Peso Corporal , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Obesidade/etiologia , Obesidade/metabolismo , Fenótipo , Locos de Características Quantitativas
11.
Nat Commun ; 10(1): 1390, 2019 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-30918252

RESUMO

The AB5 toxins cholera toxin (CT) from Vibrio cholerae and heat-labile enterotoxin (LT) from enterotoxigenic Escherichia coli are notorious for their roles in diarrheal disease, but their effect on other intestinal bacteria remains unexplored. Another foodborne pathogen, Campylobacter jejuni, can mimic the GM1 ganglioside receptor of CT and LT. Here we demonstrate that the toxin B-subunits (CTB and LTB) inhibit C. jejuni growth by binding to GM1-mimicking lipooligosaccharides and increasing permeability of the cell membrane. Furthermore, incubation of CTB or LTB with a C. jejuni isolate capable of altering its lipooligosaccharide structure selects for variants lacking the GM1 mimic. Examining the chicken GI tract with immunofluorescence microscopy demonstrates that GM1 reactive structures are abundant on epithelial cells and commensal bacteria, further emphasizing the relevance of this mimicry. Exposure of chickens to CTB or LTB causes shifts in the gut microbial composition, providing evidence for new toxin functions in bacterial gut competition.


Assuntos
Toxinas Bacterianas/farmacologia , Campylobacter jejuni/efeitos dos fármacos , Permeabilidade da Membrana Celular/efeitos dos fármacos , Toxina da Cólera/farmacologia , Enterotoxinas/farmacologia , Proteínas de Escherichia coli/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Lipopolissacarídeos/metabolismo , Animais , Bactérias/efeitos dos fármacos , Bactérias/metabolismo , Campylobacter jejuni/metabolismo , Galinhas , Gangliosídeo G(M1)/metabolismo , Glicoconjugados/metabolismo , Mucosa Intestinal/patologia , Microscopia de Fluorescência , Receptores de Superfície Celular/efeitos dos fármacos , Receptores de Superfície Celular/metabolismo
12.
Pain ; 160(4): 870-881, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30540622

RESUMO

Multiple sclerosis (MS) is an inflammatory, neurodegenerative autoimmune disease associated with sensory and motor dysfunction. Although estimates vary, ∼50% of patients with MS experience pain during their disease. The mechanisms underlying the development of pain are not fully understood, and no effective treatment for MS-related pain is available. Previous work from our laboratory demonstrated that voluntary exercise (wheel running) can reduce nociceptive behaviours at the disease onset in female mice with experimental autoimmune encephalomyelitis (EAE), an animal model used to study the immunopathogenesis of MS. However, given the established sex differences in the underlying mechanisms of chronic pain and MS, we wanted to investigate whether wheel running would also be effective at preventing nociceptive behaviours in male mice with EAE. C57BL/6 mice of both sexes were given access to running wheels for 1 hour/day until the disease onset, when nociceptive behaviour was assessed using von Frey hairs. Daily running effectively reduced nociceptive behaviour in female mice, but not in male mice. We explored the potential biological mechanisms for these effects and found that the reduction in nociceptive behaviour in female mice was associated with reduced levels of inflammatory cytokines from myelin-reactive T cells as well as reduced dorsal root ganglia excitability as seen by decreased calcium responses. These changes were not seen in male mice. Instead, running increased the levels of inflammatory cytokines and potentiated Ca responses in dorsal root ganglia cells. Our results show that voluntary wheel running has sex-dependent effects on nociceptive behaviour and inflammatory responses in male and female mice with EAE.


Assuntos
Encefalomielite Autoimune Experimental/reabilitação , Nociceptividade/fisiologia , Condicionamento Físico Animal/métodos , Caracteres Sexuais , Animais , Anticorpos/farmacologia , Proliferação de Células/fisiologia , Células Cultivadas , Meios de Cultivo Condicionados/farmacologia , Citocinas/imunologia , Citocinas/metabolismo , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/patologia , Feminino , Gânglios Espinais/citologia , Hiperalgesia/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Limiar da Dor/fisiologia , Células Receptoras Sensoriais/metabolismo , Baço/citologia
13.
Microbiol Spectr ; 5(5)2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28936943

RESUMO

There is a clear association between the gastrointestinal (GI) microbiome and the development of chronic noncommunicable diseases, providing a rationale for the development of strategies that target the GI microbiota to improve human health. In this article, we discuss the potential of supplementing the human diet with nondigestible fermentable carbohydrates (NDFCs) to modulate the composition, structure, diversity, and metabolic potential of the GI microbiome in an attempt to prevent or treat human disease. The current concepts by which NDFCs can be administered to humans, including prebiotics, fermentable dietary fibers, and microbiota-accessible carbohydrates, as well as the mechanisms by which these carbohydrates exert their health benefits, are discussed. Epidemiological research presents compelling evidence for the health effects of NDFCs, with clinical studies providing further support for some of these benefits. However, rigorously designed human intervention studies with well-established clinical markers and microbial endpoints are still essential to establish (i) the clinical efficiency of specific NDFCs, (ii) the causal role of the GI microbiota in these effects, (iii) the underlying mechanisms involved, and (iv) the degree by which inter-individual differences between GI microbiomes influence these effects. Such studies would provide the mechanistic understanding needed for a systematic application of NDFCs to improve human health via GI microbiota modulation while also allowing the personalization of these dietary strategies.


Assuntos
Carboidratos da Dieta/metabolismo , Microbioma Gastrointestinal , Trato Gastrointestinal/microbiologia , Bactérias/classificação , Bactérias/isolamento & purificação , Bactérias/metabolismo , Fermentação , Trato Gastrointestinal/metabolismo , Saúde , Humanos , Prebióticos/análise
14.
FEMS Microbiol Rev ; 41(Supp_1): S27-S48, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28673043

RESUMO

Lactobacillus species are found in nutrient-rich habitats associated with food, feed, plants, animals and humans. Due to their economic importance, the metabolism, genetics and phylogeny of lactobacilli have been extensively studied. However, past research primarily examined lactobacilli in experimental settings abstracted from any natural history, and the ecological context in which these bacteria exist and evolve has received less attention. In this review, we synthesize phylogenetic, genomic and metabolic metadata of the Lactobacillus genus with findings from fine-scale phylogenetic and functional analyses of representative species to elucidate the evolution and natural history of its members. The available evidence indicates a high level of niche conservatism within the well-supported phylogenetic groups within the genus, with lifestyles ranging from free-living to strictly symbiotic. The findings are consistent with a model in which host-adapted Lactobacillus lineages evolved from free-living ancestors, with present-day species displaying substantial variations in terms of the reliance on environmental niches and the degree of host specificity. This model can provide a framework for the elucidation of the natural and evolutionary history of Lactobacillus species and valuable information to improve the use of this important genus in industrial and therapeutic applications.


Assuntos
Especificidade de Hospedeiro/fisiologia , Lactobacillus , Simbiose/fisiologia , Anaerobiose/fisiologia , Fermentação/fisiologia , Genoma Bacteriano/genética , Lactobacillus/classificação , Lactobacillus/genética , Lactobacillus/metabolismo , Oxigênio/metabolismo , Filogenia
15.
Microbiome ; 5(1): 48, 2017 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-28454555

RESUMO

After more than a century of active research, the notion that the human fetal environment is sterile and that the neonate's microbiome is acquired during and after birth was an accepted dogma. However, recent studies using molecular techniques suggest bacterial communities in the placenta, amniotic fluid, and meconium from healthy pregnancies. These findings have led many scientists to challenge the "sterile womb paradigm" and propose that microbiome acquisition instead begins in utero, an idea that would fundamentally change our understanding of gut microbiota acquisition and its role in human development. In this review, we provide a critical assessment of the evidence supporting these two opposing hypotheses, specifically as it relates to (i) anatomical, immunological, and physiological characteristics of the placenta and fetus; (ii) the research methods currently used to study microbial populations in the intrauterine environment; (iii) the fecal microbiome during the first days of life; and (iv) the generation of axenic animals and humans. Based on this analysis, we argue that the evidence in support of the "in utero colonization hypothesis" is extremely weak as it is founded almost entirely on studies that (i) used molecular approaches with an insufficient detection limit to study "low-biomass" microbial populations, (ii) lacked appropriate controls for contamination, and (iii) failed to provide evidence of bacterial viability. Most importantly, the ability to reliably derive axenic animals via cesarean sections strongly supports sterility of the fetal environment in mammals. We conclude that current scientific evidence does not support the existence of microbiomes within the healthy fetal milieu, which has implications for the development of clinical practices that prevent microbiome perturbations after birth and the establishment of future research priorities.


Assuntos
Feto/microbiologia , Microbioma Gastrointestinal , Útero/microbiologia , Animais , Feminino , Humanos , Lactente , Recém-Nascido , Microbiota , Gravidez
16.
Sci Rep ; 6: 26511, 2016 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-27221144

RESUMO

Campylobacter jejuni is a predominant cause of human gastroenteritis worldwide. Source-attribution studies indicate that chickens are the main reservoir for infection, thus elimination of C. jejuni from poultry would significantly reduce the burden of human disease. We constructed glycoconjugate vaccines combining the conserved C. jejuni N-glycan with a protein carrier, GlycoTag, or fused to the Escherichia coli lipopolysaccharide-core. Vaccination of chickens with the protein-based or E. coli-displayed glycoconjugate showed up to 10-log reduction in C. jejuni colonization and induced N-glycan-specific IgY responses. Moreover, the live E. coli vaccine was cleared prior to C. jejuni challenge and no selection for resistant campylobacter variants was observed. Analyses of the chicken gut communities revealed that the live vaccine did not alter the composition or complexity of the microbiome, thus representing an effective and low-cost strategy to reduce C. jejuni in chickens and its subsequent entry into the food chain.


Assuntos
Vacinas Bacterianas , Infecções por Campylobacter , Campylobacter jejuni , Galinhas , Escherichia coli , Doenças das Aves Domésticas , Animais , Vacinas Bacterianas/genética , Vacinas Bacterianas/imunologia , Infecções por Campylobacter/genética , Infecções por Campylobacter/imunologia , Infecções por Campylobacter/prevenção & controle , Infecções por Campylobacter/veterinária , Campylobacter jejuni/genética , Campylobacter jejuni/imunologia , Campylobacter jejuni/patogenicidade , Galinhas/imunologia , Galinhas/microbiologia , Escherichia coli/genética , Escherichia coli/imunologia , Doenças das Aves Domésticas/genética , Doenças das Aves Domésticas/imunologia , Doenças das Aves Domésticas/microbiologia , Doenças das Aves Domésticas/prevenção & controle
17.
PLoS One ; 10(12): e0144382, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26637014

RESUMO

Host T cell reactivity toward gut bacterial epitopes has been recognized as part of disease pathogenesis. However, the specificity of T cells that recognize this vast number of epitopes has not yet been well described. After colonizing a C57BL/6J germ-free mouse with the human gut symbiotic bacteria Bacteroides thetaiotaomicron, we isolated a T cell that recognized these bacteria in vitro. Using this T cell, we mapped the first known non-carbohydrate T cell epitope within the phylum Bacteroidetes. The T cell also reacted to two other additional Bacteroides species. We identified the peptide that stimulated the T cell by using a genetic approach. Genomic data from the epitope-positive and epitope-negative bacteria explain the cross-reactivity of the T cell to multiple species. This epitope degeneracy should shape our understanding of the T cell repertoire stimulated by the complex microbiome residing in the gastrointestinal tract in both healthy and disease states.


Assuntos
Antígenos de Bactérias/imunologia , Bacteroides/imunologia , Epitopos de Linfócito T/imunologia , Microbioma Gastrointestinal/imunologia , Filogenia , Linfócitos T/imunologia , Animais , Antígenos de Bactérias/genética , Bacteroides/genética , Epitopos de Linfócito T/genética , Microbioma Gastrointestinal/genética , Humanos , Camundongos
18.
Gut Microbes ; 5(3): 286-95, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24662098

RESUMO

Under conventional conditions, mice deficient in core 1-derived O-glycans (TM-IEC C1galt1(-/-)), which have a defective mucus layer, experienced spontaneous inflammation of the colon. Analysis of fecal bacterial populations by pyrosequencing of 16S rRNA gene showed that disease in conventional TM-IEC C1galt1(-/-) was associated with shifts in the microbiota manifested by increases in Lactobacillus and Clostridium species, and decreases in unclassified Ruminococcaceae and Lachnospiraceae. Under germ-free (GF) conditions, TM-IEC C1galt1(-/-) presented decreased goblet cells, but did not develop inflammation. Monoassociation of GF TM-IEC C1galt1(-/-) revealed that bacterial species differ significantly in their ability to induce inflammatory changes. Bacteroides thetaiotaomicron caused inflammation, while Lactobacillus johnsonii (enriched during colitis) did not. These observations demonstrate that not all microbiota shifts that correlate with disease contribute to pathogenesis.


Assuntos
Bactérias/crescimento & desenvolvimento , Biota , Colite/microbiologia , Colo/microbiologia , Disbiose/complicações , Galactosiltransferases/deficiência , Animais , Bactérias/classificação , Bactérias/genética , Colite/patologia , Colo/patologia , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Modelos Animais de Doenças , Humanos , Camundongos Endogâmicos C57BL , Camundongos Knockout , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
19.
PLoS One ; 7(6): e39191, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22723961

RESUMO

The gastrointestinal tract harbors a complex and diverse microbiota that has an important role in host metabolism. Microbial diversity is influenced by a combination of environmental and host genetic factors and is associated with several polygenic diseases. In this study we combined next-generation sequencing, genetic mapping, and a set of physiological traits of the BXD mouse population to explore genetic factors that explain differences in gut microbiota and its impact on metabolic traits. Molecular profiling of the gut microbiota revealed important quantitative differences in microbial composition among BXD strains. These differences in gut microbial composition are influenced by host-genetics, which is complex and involves many loci. Linkage analysis defined Quantitative Trait Loci (QTLs) restricted to a particular taxon, branch or that influenced the variation of taxa across phyla. Gene expression within the gastrointestinal tract and sequence analysis of the parental genomes in the QTL regions uncovered candidate genes with potential to alter gut immunological profiles and impact the balance between gut microbial communities. A QTL region on Chr 4 that overlaps several interferon genes modulates the population of Bacteroides, and potentially Bacteroidetes and Firmicutes-the predominant BXD gut phyla. Irak4, a signaling molecule in the Toll-like receptor pathways is a candidate for the QTL on Chr15 that modulates Rikenellaceae, whereas Tgfb3, a cytokine modulating the barrier function of the intestine and tolerance to commensal bacteria, overlaps a QTL on Chr 12 that influence Prevotellaceae. Relationships between gut microflora, morphological and metabolic traits were uncovered, some potentially a result of common genetic sources of variation.


Assuntos
Variação Genética , Intestinos/microbiologia , Metagenoma , Locos de Características Quantitativas , Animais , Bacteroidaceae/classificação , Bacteroidaceae/genética , Mapeamento Cromossômico , Cromossomos de Mamíferos , Interação Gene-Ambiente , Estudo de Associação Genômica Ampla , Interações Hospedeiro-Patógeno , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...